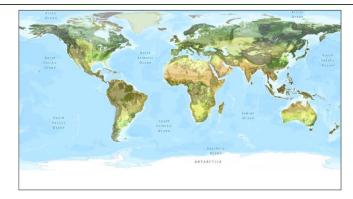
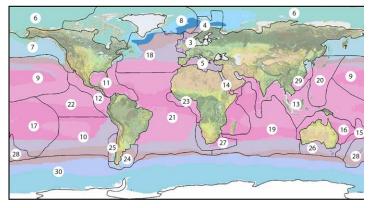


OPENDATA S OPENKNOWLEDGE Workshop

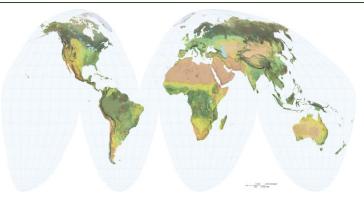
Open Ecosystems

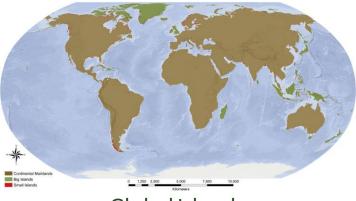
Dr. Roger Sayre U.S. Geological Survey Geneva 16 JUN 2023

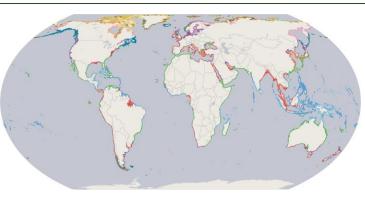



- GEO ECO Global Ecosystem Mapping
- **Outline** GEO Knowledge Hub Resources
 - The GEO Global Ecosystem Atlas An Open Resource

GEO Ecosystems (GEO ECO) Global Ecosystems Mapping

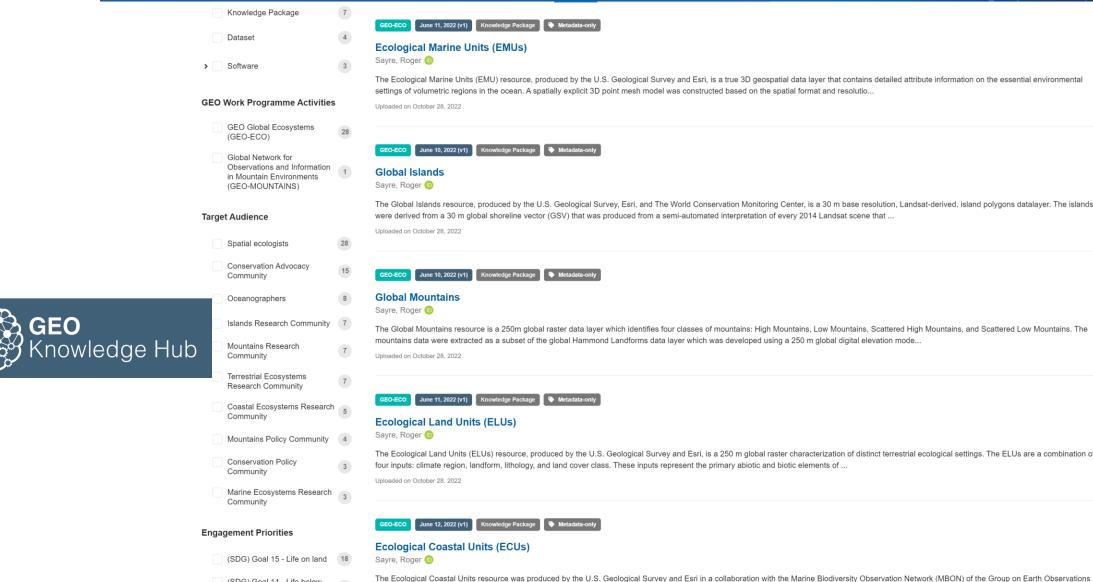

Develop standardized, robust, and practical global ecosystems classifications and maps for the planet's *terrestrial, freshwater* and *marine* ecosystems. Lead: Roger Sayre (U.S. Geological Survey) Partners: Esri, The Nature Conservancy, Experts


World Terrestrial Ecosystems (WTEs)


Ecological Marine Units (EMUs)

Ecological Land Units (ELUs)

Global Islands


GROUP ON

FARTH OBSERVATIONS

Ecological Coastal Units (ECUs)

World Landforms (Plains, Hills, Mountains, Tablelands)

GEO

The Global Islands resource, produced by the U.S. Geological Survey, Esri, and The World Conservation Monitoring Center, is a 30 m base resolution, Landsat-derived, island polygons datalayer. The islands were derived from a 30 m global shoreline vector (GSV) that was produced from a semi-automated interpretation of every 2014 Landsat scene that ...

June 10, 2022 (v1) Knowledge Package 🛛 📎 Metadata-only

Knowledge Package 🛛 🔖 Metadata-only

The Global Mountains resource is a 250m global raster data layer which identifies four classes of mountains: High Mountains, Low Mountains, Scattered High Mountains, and Scattered Low Mountains. The mountains data were extracted as a subset of the global Hammond Landforms data layer which was developed using a 250 m global digital elevation mode...

GEO-ECO June 11, 2022 (v1) Knowledge Package 🛛 🗞 Metadata-only

Ecological Land Units (ELUs)

The Ecological Land Units (ELUs) resource, produced by the U.S. Geological Survey and Esri, is a 250 m global raster characterization of distinct terrestrial ecological settings. The ELUs are a combination of four inputs: climate region, landform, lithology, and land cover class. These inputs represent the primary abiotic and biotic elements of ...

June 12, 2022 (v1) Knowledge Package 🕒 Metadata-only

Ecological Coastal Units (ECUs)

(SDG) Goal 14 - Life below 15 water

(SDG) Goal 13 - Climate action 2

Convention on Biological 1 Diversity

(SDG) Goal 11 - Sustainable 1 cities and communities

1

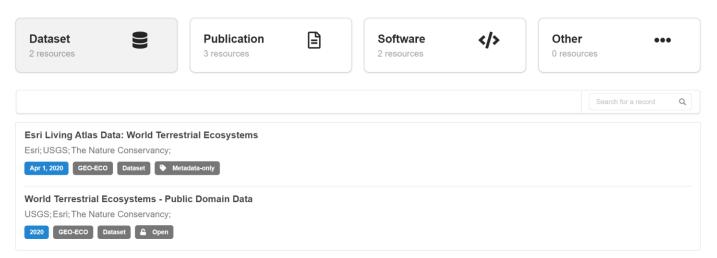
Sendai Framework

GEO-ECO June 12, 2022 (v1) Knowledge Package 📗 🐤 Metadata-only

World Terrestrial Ecosystems

Sayre, Roger 🝺

Uploaded on October 28, 2022


The World Terrestrial Ecosystems (WTEs) datalayer, produced by the U.S. Geological Survey, Esri, and The Nature Conservancy, is a new map and associated raster geospatial data of globally comprehensive, standardized, high resolution (250 m), and data-derived World Terrestrial Ecosystems. The WTEs are land areas with distinct combinations of clim.

Biodiversity Observation Network (GEO BON). A 30 m resolution global shoreline vector (GSV) that was produced from a semi-automated interpretation ...

GEO Knowledge Hub Search records Communities		+) Log in 🛛 🖓 Sign up	
Published June 12, 2022 Version v1	GEO-ECO Knowledge Package Metadata-only	Versions	GROUP ON EARTH OBSERVATIONS
Sayre, Roger 100		Version v1 (Jun 12, 2022)	
Sayre, Roger 👜	Show affiliations	Any question ?	
Citation	Style APA -	$ extstyle D_{i}$ Ask the provider	
Sayre, R. (2022). World Terrestrial Ecosystems. GEO Knowledge Hub. https://doi.org/10.60566/kbwg5-4dc85	- 4 <u>1</u>	Feedback space	
		Learn the community experience with this package	

The World Terrestrial Ecosystems (WTEs) datalayer, produced by the U.S. Geological Survey, Esri, and The Nature Conservancy, is a new map and associated raster geospatial data of globally comprehensive, standardized, high resolution (250 m), and data-derived World Terrestrial Ecosystems. The WTEs are land areas with distinct combinations of climate regime, landforms, and vegetation/land cover assemblages. 431 ecosystems were mapped. The approach taken to map the WTEs was an ecosystem structure-based mapping approach, including both abiotic structural elements (climate and landforms), and biotic structural elements (vegetation assemblages). Data were obtained to understand the global distribution of terrestrial ecosystems that were identified and mapped using a standardized, data-derived process, and to assess their representation in global protected areas.

Elements of the Knowledge Package

Published June 12, 2022 Version v1	GEO-ECO Knowledge Packa	ge 🗣 Metadata-only	Versions	660
World Terrestrial Ecosystems			Version v1 (Jun 12, 2022)	GROUP ON EARTH OBSERVATIONS
Sayre, Roger ¹		Show affiliations	Any question ?	
Citation	Style	APA -	$igcap_{i}$ Ask the provider	
Sayre, R. (2022). World Terrestrial Ecosystems. GEO Knowledge Hub. https://doi.org/10.60566/kbwg5-4dc85			Feedback space	
Sayre, R. (2022). Wond Terrestrial Ecosystems. GEO Rhowledge Hub. https://doi.org/10.00300/kbwg3-40003			Learn the community experience with this package	

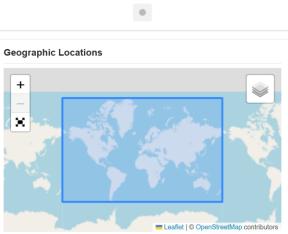
The World Terrestrial Ecosystems (WTEs) datalayer, produced by the U.S. Geological Survey, Esri, and The Nature Conservancy, is a new map and associated raster geospatial data of globally comprehensive, standardized, high resolution (250 m), and data-derived World Terrestrial Ecosystems. The WTEs are land areas with distinct combinations of climate regime, landforms, and vegetation/land cover assemblages. 431 ecosystems were mapped. The approach taken to map the WTEs was an ecosystem structure-based mapping approach, including both abiotic structural elements (climate and landforms), and biotic structural elements (vegetation assemblages). Data were obtained to understand the global distribution of terrestrial ecosystems that were identified and mapped using a standardized, data-derived process, and to assess their representation in global protected areas.

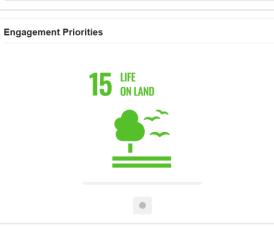
Elements of the Knowledge Package

Dataset 2 resources	Publication 3 resources		Software 2 resources		Other 0 resources	•••
					Search for	r a record Q
Mapping World Terrestrial Ecosyste	ems - GIS and Cartograp	hic Approaches	5			

Sayre, Roger; Martin, Madeline; Karagulle, Deniz; Frye, Charlie; Boucher, Timothy; Wolffe, Nicholas;

World Terrestrial Ecosystems


Sayre, Roger; Martin, Madeline; Karagulle, Deniz; Frye, Chris; Breyer, Sean; Wright, Dawn; Butler, Kevin; VanGraafeiland, Keith; Boucher, Timothy; McGowan, Jennifer;


Jan 1, 2020 GEO-ECO Book section Metadata-only

An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems

Sayre, Roger; Karagulle, Deniz; Frye, Charlie; Boucher, Timothy; Wolff, Nicholas H.; Breyer, Sean; Wright, Dawn; Martin, Madeline; Butler, Kevin; Van Graafeiland, Keith; Touval, Jerry; Sotomayor, Leonardo; McGowan, Jennifer; Game, Edward T; Possingham, Hugh;

Mar 2020 GEO-ECO Journal article 🕒 Open

Target audiences engagement priorities and subjects

Published Ju	Global Ecology and Conservation 21 (2020) e00860	
World Sayre, Roger	Contents lists available at ScienceDirect	GLOBAL
Citation	Global Ecology and Conservation	
Sayre, R. (20	ELSEVIER journal homepage: http://www.elsevier.com/locate/gecco	n n
Descript	Original Research Article	
The World Te leospatial da combinations tructure-bas ubtained to u epresentatio	An assessment of the representation of ecosystems in glo protected areas using new maps of World Climate Region and World Ecosystems	
Element Datase 2 resourc	Roger Sayre ^{a, *} , Deniz Karagulle ^b , Charlie Frye ^b , Timothy Boucher ^c , Nicholas H. Wolff ^d , Sean Breyer ^b , Dawn Wright ^b , Madeline Martin ^a , Kevin Butler ^b , Keith Van Graafeiland ^e , Jerry Touval ^c , Leonardo Sotomayo Jennifer McGowan ^c , Edward T. Game ^g , Hugh Possingham ^g	or ^f ,
Mapping Sayre, Roç 2020 Ge	 ^a U.S. Geological Survey, 516 National Center, Reston, VA, 20192, USA ^b Esri, 380 New York Street, Redlands, CA, 92373, USA ^c The Nature Conservancy, 4245 Fairfax Drive, Arlington, VA, 22203, USA ^d The Nature Conservancy, 14 Maine Street, New Brunswick, ME, 04011, USA ^e Esri, 8619 Westwood Center Drive, Vienna, VA, 22182, USA ^f The Nature Conservancy, Avenida de los Shyris E9-38 y Bélgica, Edificio Shyris Century Oficina 2D, Quito, Ecuador 	

GED GROUP ON EARTH OBSERVATIONS

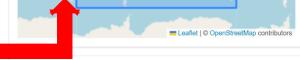
Anchor Paper

Data Description

Location of Data

Reproducible Methodology

An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems


Sayre, Roger; Karagulle, Deniz; Frye, Charlie; Boucher, Timothy; Wolff, Nicholas H.; Breyer, Sean; Wright, Dawn; Martin, Madeline; Butler, Kevin; Van Graafeiland, Keith; Touval, Jerry; Sotomayor, Leonardo; McGowan, Jennifer; Game, Edward T; Possingham, Hugh;

⁸ The Nature Conservancy, University of Queensland, St. Lucia, QLD, 4072, Australia

Mar 2020 GEO-ECO Journal article 🔒 Open

World Ter

Sayre, Rog Jan 1, 202

Target audiences engagement priorities and subjects

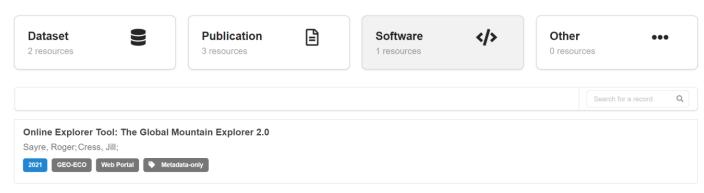
Published June 12, 2022 Version v1	GEO-ECO Knowledge Packag	je 💽 🔖 Metao	lata-only	Versions
World Terrestrial Ecosystems				Version v1 (Jun 12, 2022)
Sayre, Roger ¹ 10		Show affi	liations	Any question ?
Citation	Style	APA	•	\bigcap_{l} Ask the provider
Sayre, R. (2022). World Terrestrial Ecosystems. GEO Knowledge Hub. https://doi.org/10.60566/kbwg5-4dc85			ß	Feedback space

The World Terrestrial Ecosystems (WTEs) datalayer, produced by the U.S. Geological Survey, Esri, and The Nature Conservancy, is a new map and associated raster geospatial data of globally comprehensive, standardized, high resolution (250 m), and data-derived World Terrestrial Ecosystems. The WTEs are land areas with distinct combinations of climate regime, landforms, and vegetation/land cover assemblages. 431 ecosystems were mapped. The approach taken to map the WTEs was an ecosystem structure-based mapping approach, including both abiotic structural elements (climate and landforms), and biotic structural elements (vegetation assemblages). Data were obtained to understand the global distribution of terrestrial ecosystems that were identified and mapped using a standardized, data-derived process, and to assess their representation in global protected areas.

Elements of the Knowledge Package

Dataset 2 resources	Publication 3 resources	Software 2 resources		Other ••• 0 resources
StoryMap: World Climate R	egions			Search for a record Q
Karagulle, Deniz; 2020 GEO-ECO Web Portal StoryMap: World Terrestrial	Metadata-only			
Karagulle, Deniz;	Metadata-only			

Geographic Locations



Published Jun	e 10, 2022 Version v1	GEO-ECO Knowledge Packa	ige	🗣 Metad	lata-only	1	Versions
Global	Mountains						Version v1 (Jun 10, 2022)
Sayre, Roger	©			Show affi	liations		
				Show and	nations	1	Any question ?
Citation		Style	A	PA	•		
Savra R (20)	2). Global Mountains. GEO Knowledge Hub. https://doi.org/10.60566/9r50z-brw15				L	F	Feedback space
Cayle, R. (202	2, Slobal Woundand. SES Knowledge Hab. https://doi.org/10.00000/0002501W10						• Learn the

The Global Mountains resource is a 250m global raster data layer which identifies four classes of mountains: High Mountains, Low Mountains, Scattered High Mountains, and Scattered Low Mountains. The mountains data were extracted as a subset of the global Hammond Landforms data layer which was developed using a 250 m global digital elevation model (DEM) and feature-based extraction algorithms using raster processing and variable neighborhood analysis window (NAW) sizes. Of the 16 Hammond Landforms that were mapped, four were mountain classes. E. H. Hammond was a pioneer of landform mapping and identified three parameters for distinguishing different types of plains, hills, mountains, and tablelands: 1) slope, 2) relative relief, and 3) profile, where the profile parameter assesses the amount of relatively flat terrain in upland locations to delineate tablelands. The global mountains layer produced from the Hammond landforms analysis is called the K3 mountains layer, and joins two other widely recognized global mountain extent data layers which are called K1 and K2. The use of the K1, K2, and K3 labels stems from the fact that the last name of the primary developer of these resources happens to begin with the letter K (i.e. Kapos, for K1; Koerner, for K2; and Karagulle, for K3). In addition to the data, the Global Mountains GEO Knowledge Hub also contains other knowledge products (publications, online explorer tools, etc.) related to the Global Mountains resource.

Elements of the Knowledge Package

Version v1 (Jun 10, 2022) Any question ?

 \bigcap_{i} Ask the provider

Learn the community experience with this package

Engagement Priorities

Geographic Locations

Global Mountain Explorer 2.0

What People Want

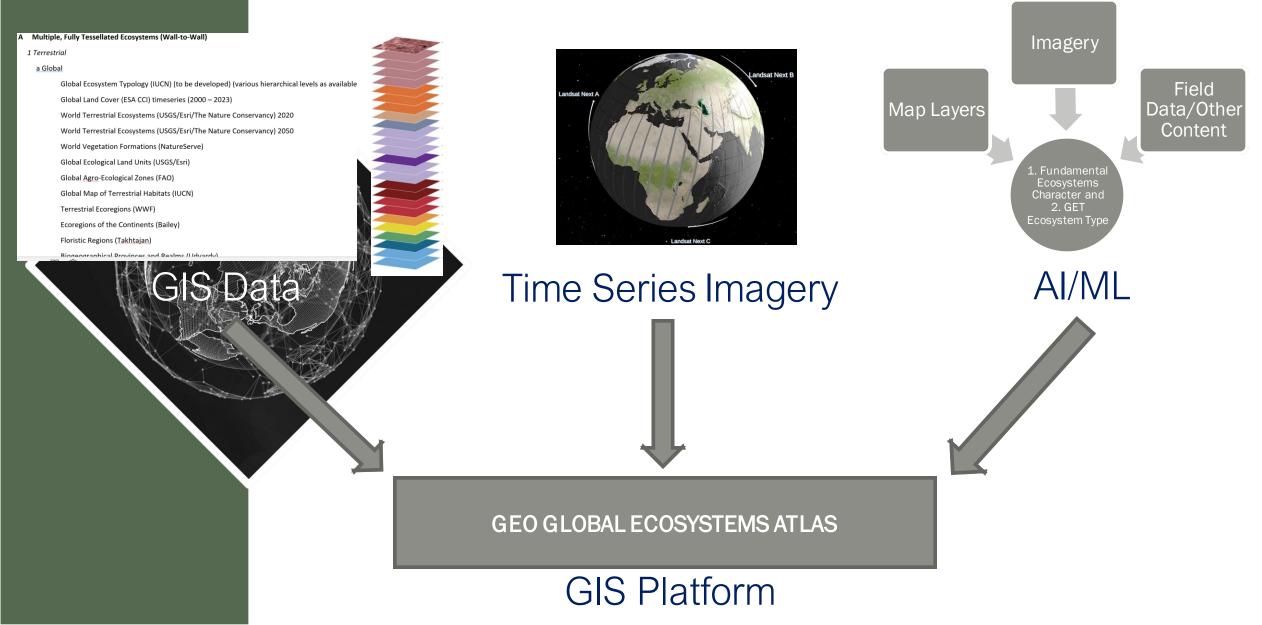
- Data
- Maps
- Publications
- Online Explorer Tools
- StoryMaps
- Models and Workflows

GEO Knowledge Hub

Global Ecosystems Atlas

Convention on Biological Diversit

> United Nations Convention to Comba Desertification


United Nations Framework Convention on Climate Change

Co-developing an open online resource with explorable interface to monitor and report on ecosystem type distributions and changes in ecosystem extent, with the goal of prompting urgent action to protect biodiversity and inform nature-based solutions to fight climate change.

Components - Global Ecosystem Atlas

OEOA Challenges and Opportunities

*1 Open data concept is straightforward (simple format conversions)

but open applications are more complicated.

- *2 Metadata development is burdensome.
- *3 'Making everything open' is challenging when working with

corporate sector, yet the benefits from public/private partnerships

are undeniable. Many people use COTS technologies.

GEO Knowledge Hub

Phenomenal resource, 'pointer of choice'.

• GEO Global Ecosystems Atlas The Atlas will be an open resource.

CONTACT DETAILS

Roger Sayre Senior Scientist for Ecosystems Land Change Science Program U.S. Geological Survey

rsayre@usgs.gov

04/07/2023