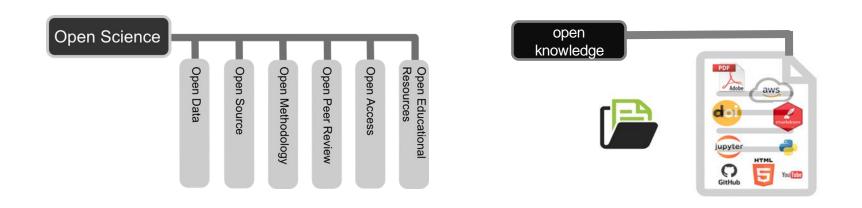


OPENION ENGENIERS Workshop

CAPACITY DEVELOPMENT AND OPEN DATA / OPEN KNOWLEDGE



THE MAIN QUESTIONS

HOW TO MOVE THE GEO COMMUNITY TO ADOPT OPEN DATA AND OPEN KNOWLEDGE?

HOW TO BRING KNOWLEDGE TO A WIDER COMMUNITY FOR GREATER IMPACT THROUGH THE GEO KNOWLEDGE HUB?

IMPLICATIONS FOR CAPACITY DEVELOPMENT: NEW SKILLS

Everything will be digital and open, new skills are needed:

- Ability to manage large amounts of geo data
- New technologies (big data, data analytics, cloud computing, machine learning, etc.)
- Open access publishing
- Communication with stakeholders
- Research data production, management, analysis/use/reuse, dissemination
- Legal, integrity and ethics

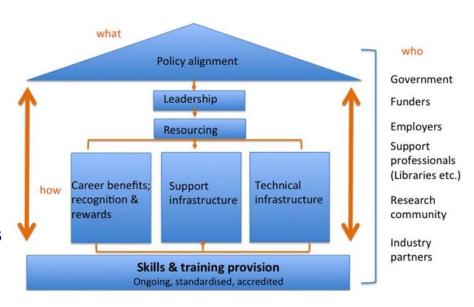
^{*} Providing Researchers with the skills and competencies they need to practice Open Science; OS working Group of the European Commission, 2017

IMPLICATIONS: ATTITUDE CHANGE

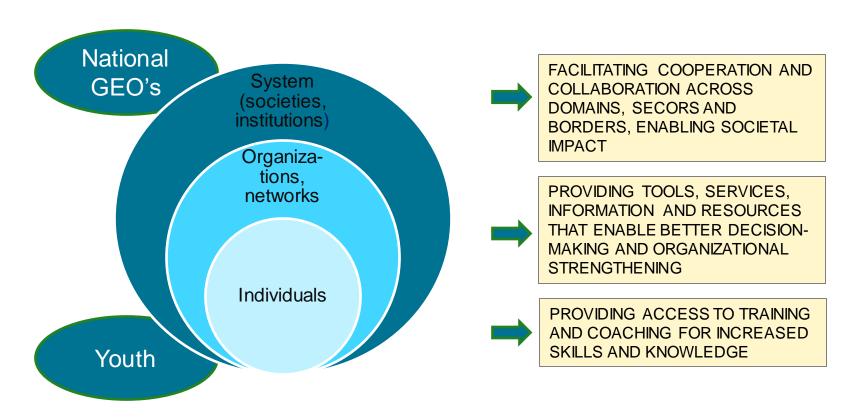
Changes in attitude are needed:

- A change of paradigm from "protected data by default" to "open data by default", respecting legal, and other constraints
- Acting in and beyond one's own scholarly and disciplinary community
- Sharing of knowledge and best practices within community platforms of practitioners, scientists and interested civilians
- (Citizen science) expertise to interact with the general public to enhance the impact of science and research (collecting data and doing collaborative research with non-scientists).

EXAMPLE: CAPACITY DEVELOPMENT NEEDS FOR RESEARCHERS


Open Science Career Assessment Matrix (OS-CAM)	
Open Science activities	Possible evaluation criteria
RESEARCH OUTPUT	
Research activity	Pushing forward the boundaries of open science as a research topic
Publications	Publishing in open access journals
	Self-archiving in open access repositories
Datasets and research	
results	Adopting quality standards in open data management and open datasets
	Making use of open data from other researchers
Open source	Using open source software and other open tools
	Developing new software and tools that are open to other users
Funding	Securing funding for open science activities
RESEARCH PROCESS	
Stakeholder engagement	
/ citizen science	Sharing provisional research results with stakeholders through open
V-	platforms (e.g. Arxiv, Figshare)
	Involving stakeholders in peer review processes
Collaboration and	Widening participation in research through open collaborative projects
Interdisciplinarity	Engaging in team science through diverse cross-disciplinary teams
Research integrity	Being aware of the ethical and legal issues relating to data sharing,
	confidentiality, attribution and environmental impact of open science
	activities
	Fully recognizing the contribution of others in research projects,
Diele were seement	including collaborators, co-authors, citizens, open data providers
Risk management	Taking account of the risks involved in open science

IMPLICATIONS: A HOLISTIC APPROACH


Individual, organizational and institutional capacity development efforts are needed:

- Institutional policies on ODOK
- Support for ODOK: infrastructure, legal, technical
- Rewarding systems and career guidelines
- Funding guidelines / crowdfunding
- Networking and collaboration

IMPLICATIONS: A HOLISTIC APPROACH

IMPLICATIONS: THE DESIGN PROCESS

CONDUCT A NEEDS ASSESSMENTS

Each target group requires a **fit-for-purpose** set of CD interventions.

DEFINE THE REQUIRED COMPETENCES (skills, knowledge, attitude) DEFINE THE BEST CD APPROACHES

- Awareness training
- On-line technical courses / e-learning platform (e.g. ITC's GEOversity platform)
- MOOC's (Massive Open Online Courses)
- Peer learning / sharing platform
- Coaching
- o Tools, guidance docs, templates

DEFINE THE MONITORING AND ASSESSMENT PROCEDURE

CONTACT DETAILS

EMAIL ADDRESS

jteuben@geosec.org

PHONE NUMBER

+31 534897593

