

OPENDATE SERVICE WORKSHOP

GEOGLAM in situ data coordination driven by Essential

Agriculture Variables (EAVs)

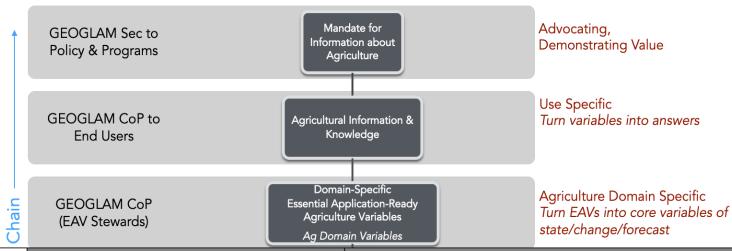
GEOGLAM?

- GEOGLAM is an open, cooperative initiative bound together by common interest and good intent
- Low overhead, driven primarily by in-kind work contributions towards a common vision for food security decision support
- Authoritative provider of independent, timely, science based information for decision support

04/07/2023

Essential Agricultural Variables for GEOGLAM

Justification

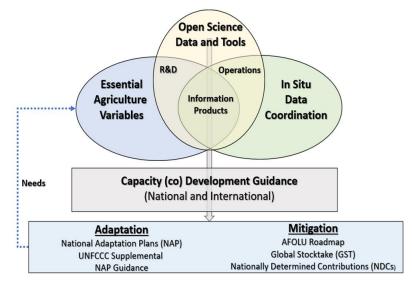


Co-leads: Whitcraft (UMD/NASA Harvest) & Gilliams (VITO)

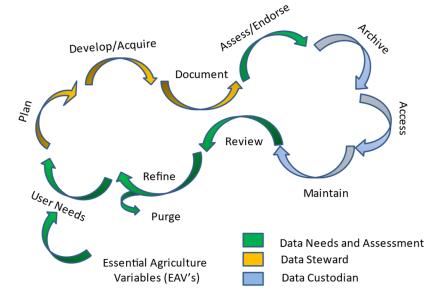
Essential: key 'building blocks' to produce relevant and timely information products

Agriculture: related to agricultural productivity and land use

Variables: they can be measured or inferred, and change over space


<u>interred, and change over space - 0</u>						Ag Dom			ain variables		9			
ě						Systematic Acquisitions (Wall-to-Wall, Year-Round Monitoring)				Tasked Acquisitions (Small Croplands, Hotspots; Refining via Samp				
Spatial Resolution (Goal to Threshold)						50 - 500 m	500 m - 10 km	10 - 30 m	10 - 30 m	3 - 10 m	3 - 10 m	<3 m		<3 m
						VIS RE NIR SWIR Thermal + Cloud Bands	Passive Microwave	VIS RE NIR SWIR Thermal + Cloud Bands	SAR dual (Threshold) to quad (Goal) polarization; multifrequency (Threshold: L,S,C; Goal: L,S,C,X,P)	VIS RE NIR SWIR (+ Thermal + Cloud Bands)	SAR dual (Threshold) to quad (Goal) polarization; multifrequency (Threshold: L,S,C; Goal: L,S,C,X,P)		WIR; Threshold: VIS IIR	SAR Multifrequency
Cloud Free Obs. Frequency (Goal to Threshold)						12x daily	daily	weekly	2-4x weekly	1-2x weekly	2-4x weekly	1-2x yearly	1-2x monthly	weekly
Coverage Notes					Wall-to-Wall				Cropland Extent	Cropland extent (cloudy & rice)	Cropland Extent (non-cloudy)	Refined Sample of All Fields	Cloudy Croplands	
Goal Update Frequency Threshold Update Frequency														
			Agriculture Mask	Monthly		х		х	х	х	M/S	S	S	
			Cropland Mask	Monthly		х		х	×	х	M/S	S	S	

In Situ data Coordination GEOGLAM



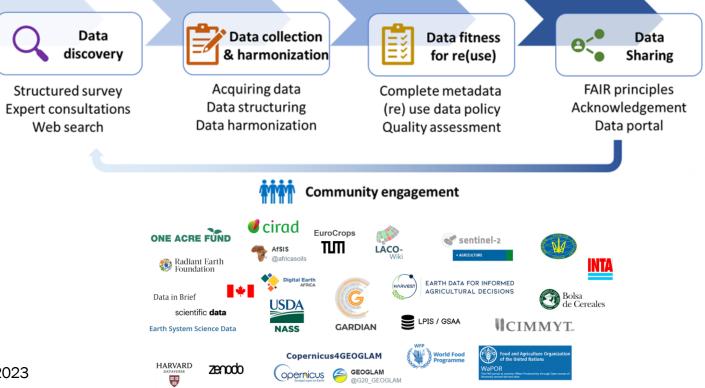
- A decade ago the major constraint to operational monitoring was access to free and open EO data, then the major hurdle became the cost and availability of big data analytics; the next constraint was access to mature, reproducible analytical tools. Great progress has been in all these areas...
- One of the last major constraints to progress:
- Open access to high quality, well managed in situ data for training and validation
- Current in situ data access is insufficient for the development of systematic operational monitoring capacities required to address our policy priorities
- Some incremental coordination leveraging our existing activities could have a major impact at relatively low cost

"the whole can be greater than the sum of the parts"

In-situ data life cycle

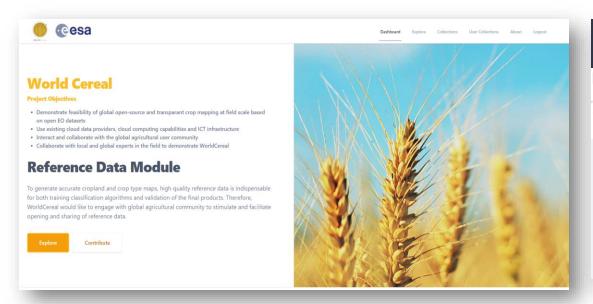
In Situ data Coordination GEOGLAM

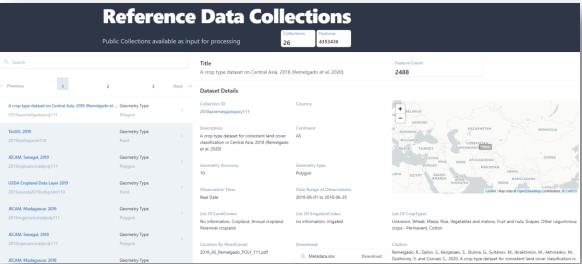
- GEOGLAM initiated a working group on in situ data in 2021
- Early 2022 an initial workplan and guidance document was developed by the WkGrp
- GEOGLAM was able to leverage significant effort by WorldCereal to create a global reference data set for crop mapping
- November 2022 GEOGLAM convened a workshop in Geneva to review and refine the workplan towards the development of a detailed action plan (currently in draft)
- capacities, some require Key actions were developed, some in development, within existing resources an

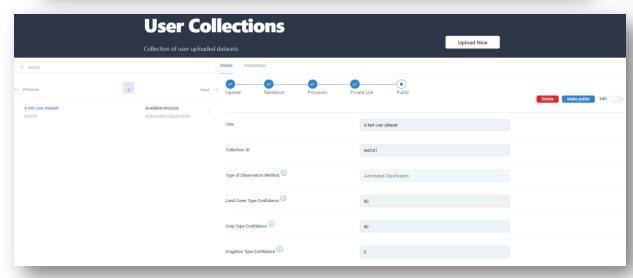

incremental support (i.e. funding, staff time, technical resources)

The case of cropland and crop type mapping

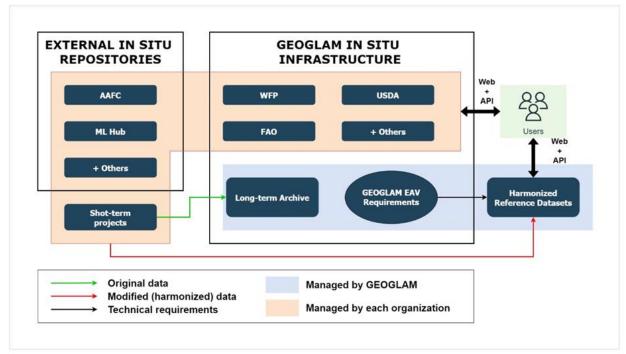
- Need for a global, extensive, open reference data repository with recent data on crop types and land cover
- No current solution of sufficient, high quality (open) reference data so started a journey...





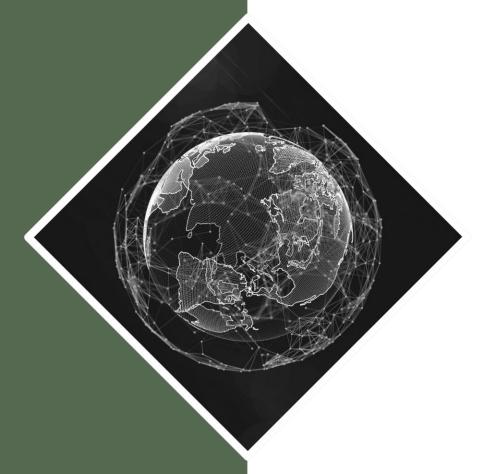


The case of cropland and crop type mapping



04/07/2023

Next steps



- Gaps assessment for EAVs implementation, including in situ data needs
- Institutionalize, sustain, and update the WorldCereal reference data repository and Encourage and Enable the community to share data following the open science and open data principles
- Explore business models to strengthen and sustain harmonization hubs (data holdings)
- Implement a demo distributed architecture with hosting capability using the open source CKAN solution under the neutral GEO/GEOGLAM umbrella, with an implementation of STAC, and common API to query the data

04/07/2023

Joint Workshop: Community-led good-practices for cropland and crop type validation

12-14 September 2023 | USDA National Agricultural Library Beltsville, MD

- Supports CEOS AFOLU Stocktake
- Jointly organized by GEOGLAM & CEOS:

LPV Leadership: Sophie Bontemps (UCL) & Sasha Tyukavina (UMD) EAV Leadership: Sven Gilliams (VITO) & Alyssa Whitcraft (UMD)

■ Supported by:

NASA Land Cover & Land Use Change Program

NASA Applied Sciences Agriculture Program

GLOBAL AGRICULTURAL MONITORING

CONTACT DETAILS

EMAIL ADDRESS

Sven.gilliams@vito.be

PHONE NUMBER

003214336827

