Strength in numbers: The benefits of working with multiple platforms to monitor greenhouse gases and other air quality gases

07/11/2023 11:00am to 11:30am
Public GHG observation cases

JAXA’s GOSAT and GOBLEU cases

Osamu Ochiai
Contributing to the GHG observation history from space

GOSAT data presents 14 years of global CO$_2$ concentration and its global changes since 2009.
14 years of spatio-temporal CO₂ distribution from GOSAT

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>No Image</td>
<td>No Image</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>No Image</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
</tr>
</tbody>
</table>

Data is freely available from website: https://data2.gosat.nies.go.jp/index_en.html
Japan’s GHG observatories from space

<table>
<thead>
<tr>
<th>Project</th>
<th>GOSAT (Kuze et al, AO, 2009)</th>
<th>GOSAT-2 (Suto et al, AMT, 2021,2022)</th>
<th>GOSAT-GW (development)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Launch	2009/1/23 (14 years on-orbit)	2018/10/29 (4 years on-orbit)	JFY2024
Local observation time	13:00	13:00	13:30
Revisit time	3 days	6 days	3 days

Observation target
- **CO₂, CH₄,** SIF(Solar-induced chlorophyll fluorescence)
- **CO₂, CH₄, CO** SIF(Solar-induced chlorophyll fluorescence)
- **CO₂, CH₄, NO₂** SIF(Solar-induced chlorophyll fluorescence)

Observation image
- Grid
- Target Glint
- Wide Focus
JAXA partial column GHG product

- Use full observation advantage by GOSAT and GOSAT-2 such as simultaneous ShortWave Infrared (SWIR) and Thermal Infrared (TIR) observation as well as 2-orthogonal polarization information.

- 2 layers in troposphere and 3 layers in stratosphere are applied for CO$_2$ and CH$_4$ vertical* concentration.

* 6 pressure levels: 0.1 hPa & (0.05, 0.1, 0.2, 0.6, 1) * Psurf

Conventional Method

JAXA/EORC new Method

Use only solar reflected light
& thermal
0.1 hPa
0.05 * Psurf
0.1 * Psurf
0.2 * Psurf = ~12 km
0.6 * Psurf = ~4 km

CO$_2$ & CH$_4$ emission and enhanced density of the lower troposphere

%MOE/JAXA/NIES

©MOE/JAXA/NIES
Overview of GHG Satellite Missions – GENERIC

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Agency/Origin</th>
<th>CO₂</th>
<th>CH₄</th>
<th>Private</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOSAT</td>
<td>JAXA-NIES-MOE/Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCO-2</td>
<td>NASA/USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentinel 5 Precursor</td>
<td>ESA-EC Copernicus/Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FengYun-3 series (GAS)</td>
<td>CMA-NSMC/China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaoFen-5 series</td>
<td>CAS/China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOSAT-2</td>
<td>JAXA-NIES-MOE/Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCO-3</td>
<td>NASA/USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHGSat constellation</td>
<td>GHGSat/Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MethaneSAT</td>
<td>EDF/USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicroCarb</td>
<td>CNES/France (& UKSA/UK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feng Yun 3H</td>
<td>CMA-NMSC/China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CarbonMapper¹</td>
<td>CarbonMapper LLC/USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeoCarb</td>
<td>NASA/USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MetOp-SG series (S-5)</td>
<td>ESA-EC Copernicus/Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOSAT-GW</td>
<td>JAXA-NIES-MOE/Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2M constellation</td>
<td>ESA-EC Copernicus/Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Carbon Mapper is a public/private partnership between California and Carbon Mapper LLC.

- [] Launched & nominal
- [] Extended or planned
- [] Phased deployment
GHG remote sensing from a passenger aircraft

Our concepts:
- NO hardware modification to aircraft*
- Compact instruments on cabin seats
- Observing through cabin window
- Small power consumption with mobile battery operation
- 3 modules: 450nm, 740nm and 1.6um bands for NO$_2$, SIF and CO$_2$ with fiber coupling.

Commercial airliners can make repeatable and frequent observations over mega-cites with lower cost than research flights!.

*Limitation of size and weight, the capacity of battery, electronical magnetic conduction from instruments have to be passed the...
The first high resolution NO$_2$ observations from GOBLEU

- High NO$_2$ were observed over emission hot spots (cities, point sources, and traffic)
- In megacity Nagoya, spatial pattern of NO$_2$ is different from GOBLEU(GB) and emission inventory.

Suto et al., submitted.
High-Resolution GHG Data

The GHGSat Constellation

Jean-Francois Gauthier
ROUTINE MONITORING OF METHANE EMISSIONS AT INDUSTRIAL SITES – FROM SPACE

GHGSat is the only entity in the world (private or public) with satellites designed to monitor emissions from individual industrial facilities anywhere in the world.
GHGSAT CONSTELLATION - CAPACITY

Every industrial emitter in the world, measured daily, in near real-time
GHGSAT CONSTELLATION – COVERAGE & REVISIT

3M+ facility measurements per year

Up to daily revisits in targeted areas

2023
GHGSAT’S MODEL: COLLABORATION

• GHGSat believes that collaboration is the ultimate force-multiplier when it comes to addressing the emissions challenge head on.

• Academic/Scientific Partnerships
 • Harvard
 • SRON
 • Stanford

• Institutional Partnerships
 • European Space Agency (ESA)
 • Canadian Space Agency (CSA)
 • NASA
 • UNEP IMEO

• Industrial Partnerships
 • Glint mode development/demonstration

• Others
 • S&P Global
 • IEA Methane Tracker Report
COLLABORATIONS
Validation / Combining Public and Private Data

GHGSat Satellite
2023-02-01 / 07h18m

Sentinel-2 / DEMETER
2023-02-01 / 07h21m

PRISMA
27/02/23
07:28 UTC

GHGSat
27/02/23
10:10 UTC
Aircraft monitoring with DATA.AIR

GHGSat airborne sensors are deployed in every major basin in North America, as well as internationally.

- Minimum detection threshold of ~10 kg/hr
- Flight altitude: 10,000 ft above ground level (AGL)
- Spatial resolution (GSD) <1 m (<3 ft), altitude dependent

AV CH₄ measurement

Oil & Gas
Permian Basin, USA
2021-02-03
New free subscription on emissions intelligence platform

Everyone can explore higher temporal resolution of methane concentrations globally with a high-resolution observation gallery of featured emissions around the world.

You can activate your SPECTRA account today for free here: