Welcome!

The meeting is starting soon
Since 2019 Dr Sara Venturini has been leading GEO’s work to advance the use of Earth observations in support of climate action by UN member countries and partners. She has over 12 years’ professional experience collaborating with UN bodies and advising governments and organisations on developing climate change adaptation policies, accessing climate finance, and participating in multilateral negotiations under the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC). As a climate change advisor, she has worked with countries in the Caribbean and Indian Ocean, the Western Balkans, Central Asia, the Middle East, and Europe. She put her scientific expertise at the service of art projects, including the film anthology “Interdependence” that premiered at the Film Festival of Rome in 2019. She holds a PhD in Climate Change Science and Management from Ca’ Foscari University of Venice, Italy.
Yana Gevorgyan is the Director of GEO Secretariat since July 2021. Ms. Gevorgyan is an expert in international relations whose career spans humanitarian relief and development, international think tanks, and government organizations. Prior to her selection as the next Director of GEO Secretariat, Ms. Gevorgyan was the GEO Program Manager at the U.S. National Oceanic and Atmospheric Administration’s (NOAA). She had represented the United States to GEO in many capacities, including as a Co-Chair of the GEO Programme Board until May 2021. As a member of the United States delegation, Ms. Gevorgyan spearheaded several key initiatives in GEO, including the landmark policy on GEO Associates, the GEO Awards and GEO Pledge Campaign.
Welcome
by the GEO Secretariat

Yana Gevorgyan, Director, GEO Secretariat
21 September 2021
<table>
<thead>
<tr>
<th>Time</th>
<th>Tuesday, 21 September 2021</th>
<th>Wednesday, 22 September 2021</th>
<th>Thursday, 23 September 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 – 12.00 CEST</td>
<td>Day 1: EO for national climate action</td>
<td></td>
<td>Day 3: EO for climate finance decisions</td>
</tr>
<tr>
<td>12.00 – 15.00 CEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00 – 18.00 CEST</td>
<td></td>
<td>Day 2: EO for collective ambition on climate</td>
<td></td>
</tr>
</tbody>
</table>
Day 1: Earth observations for national climate action

Opening of Day 1 and Welcome

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.00-12.05</td>
<td>Introduction</td>
<td>Sara Venturini</td>
<td>Climate Coordinator, GEO Secretariat</td>
</tr>
<tr>
<td>12.05-12.10</td>
<td>Welcome by the GEO Secretariat</td>
<td>Yana Gevorgyan</td>
<td>Director, GEO Secretariat</td>
</tr>
</tbody>
</table>

Session 1: Countries’ EO needs to support climate action

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.10-12.20</td>
<td>Briefing on upcoming international UN Climate Change Conference - COP26</td>
<td>Ailsa Stroud</td>
<td>Earth Observations Policy Lead, Chief Scientific Adviser's Office, Defra, UK</td>
</tr>
<tr>
<td>12.20-12.30</td>
<td>Setting the scene: importance of EO for national climate action on adaptation</td>
<td>Paul Desanker</td>
<td>Manager, Adaptation Division, UNFCCC Secretariat</td>
</tr>
<tr>
<td>12.30-12.35</td>
<td>Perspective of LDCs</td>
<td>Bapon Fakhruddin</td>
<td>Technical Director- DRR and climate resilience, Tonkin + Taylor, ARA network</td>
</tr>
<tr>
<td>12.35-12.40</td>
<td>Perspective of SIDS</td>
<td>Stuart Minchin</td>
<td>Director-General, SPC</td>
</tr>
<tr>
<td>12.40-12.45</td>
<td>Perspective of LAC</td>
<td>Rafael Monge Vargas</td>
<td>Director, CENIGA, MINAE, Costa Rica</td>
</tr>
<tr>
<td>12.45-12.50</td>
<td>Perspective of mountain nations</td>
<td>Mandira Shrestha</td>
<td>Programme Coordinator, Climate Services - Mountain Environment Regional Information System, ICIMOD</td>
</tr>
<tr>
<td>12.50-12.55</td>
<td>Perspective of indigenous peoples</td>
<td>James Rattling Leaf Sr.</td>
<td>Co-founder, GEO Indigenous Alliance</td>
</tr>
</tbody>
</table>
| 12.55-13.20 | Open discussion:
 - What are the most critical EO needs to support climate action at the national level?
 - And how should they be addressed / prioritised by the EO community? | All speakers | Moderator: Steven Ramage |

Short break
Day 1: Earth observations for national climate action

Session 2: GEO Work Programme activities supporting national climate action

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.30-13.40</td>
<td>Mapping of GEO Work Programme activities - initial results</td>
<td>Virginia Burkett (GEO CC-WG Co-chair, USGS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>David Borges (GEO DRR-WG Co-chair, NASA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rui Kotani (DRR Coordinator, GEO Secretariat)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allison Craddock (GEO CD-WG Co-chair, IAG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pat Cummens (Director of Government Strategy and Policy Solutions, ESRI)</td>
</tr>
<tr>
<td>13.40-13.50</td>
<td>GEOGLAM: integrating EO into national adaptation efforts in agriculture in Uganda</td>
<td>Ian Jarvis (Director, GEOGLAM Secretariat)</td>
</tr>
<tr>
<td>13.50-14.00</td>
<td>GEOGloWS-ECMWF Streamflow Forecast: assisting Honduras in flood risk management</td>
<td>Angelica Gutierrez (Co-Chair of GEOGloWS, NOAA)</td>
</tr>
<tr>
<td>14.00-14.10</td>
<td>GEO Blue Planet - Dynamic Coast: supporting climate change adaptation of the coast</td>
<td>James Fitton (Senior Postdoctoral Researcher, GEO Blue Planet, MaREI Centre, UCC)</td>
</tr>
<tr>
<td>14.10-14.20</td>
<td>Supporting climate action at the national level: hints from the SCO</td>
<td>Frédéric Bretar, Head of SCO, CNES</td>
</tr>
<tr>
<td>14.20-14.30</td>
<td>Digital Earth Africa: a platform to support climate action in Africa</td>
<td>Shanti Reddy (Senior Partnership and Implementation Manager, DE AFRICA)</td>
</tr>
<tr>
<td>14.30-14.50</td>
<td>Q&A</td>
<td>All speakers</td>
</tr>
<tr>
<td></td>
<td>Open discussion:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- How can GEO most effectively support national climate action with EO-based products?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What should be the "GEO niche" in supporting the implementation of the Paris Agreement (adaptation/mitigation/other)?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Are there any perceived gaps/synergies in the GEO WP to address national climate action? If so, how should these be addressed / exploited?</td>
<td></td>
</tr>
<tr>
<td>14.50-15.00</td>
<td>Wrap-up of Day 1</td>
<td>Sara Venturini (Climate Coordinator, GEO Secretariat)</td>
</tr>
</tbody>
</table>
Workshop protocol

- Change your name into ‘Organisation: Name Surname’
- Participants: use the Q&A box for questions
- Speakers: keep within time limits
- Be aware that the meeting will be recorded for workshop report
- Twitter #EO4IMPACT and follow @GEOSEC2025
Session 1

Countries' EO needs to support climate action
Ailsa is the Head of Earth Observations Policy in the Chief Scientific Adviser’s Office at Defra. She takes the lead in UK EO policy; developing the UK’s cooperation with regional and international partners and engaging with a full range of initiatives to support Defra’s use of EO data and tools. She manages the Defra Earth Observation Centre of Excellence (EOCoE) and has built a network of UK users of EO to respond to the needs of Defra and wider policy applications.

Prior to her current role Ailsa worked on the UK Ecosystem Impacts of Air Quality & Future Modelling Programme and on the UK’s Greenhouse Gas Inventory Improvement Programme. Before joining Defra, Ailsa was an Ice Core Analytical Scientist with the British Antarctic Survey measuring chemicals present in ice cores retrieved from Antarctica and Greenland. This included 75 days in Antarctica drilling three 140m ice cores at three sites at 74° South, and 6 weeks at a deep ice core comprehensive drilling and analysis campaign at 77° North. Ailsa holds a PhD in Atmospheric Chemistry from the University of Cambridge.
Briefing on upcoming international UN Climate Change Conference - COP26

Dr. Ailsa Stroud, Department for Environment, Food and Rural Affairs, UK
21 September 2021
COP26 Schedule

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Events</th>
<th>Week 2</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 1(^{st})</td>
<td>World Leaders Summit</td>
<td>Monday 8(^{th})</td>
<td>Adaptation, loss and damage</td>
</tr>
<tr>
<td>Tuesday 2(^{nd})</td>
<td>World Leaders Summit And Earth Info Day</td>
<td>Tuesday 9(^{th})</td>
<td>Science and innovation And Gender</td>
</tr>
<tr>
<td>Wednesday 3(^{rd})</td>
<td>Finance for adaptation and mitigation</td>
<td>Wednesday 10(^{th})</td>
<td>Transport</td>
</tr>
<tr>
<td>Thursday 4(^{th})</td>
<td>Energy</td>
<td>Thursday 11(^{th})</td>
<td>Cities, regions and built environment</td>
</tr>
<tr>
<td>Friday 5(^{th})</td>
<td>Youth and Public Empowerment</td>
<td>Friday 12(^{th})</td>
<td>Closure of negotiations</td>
</tr>
<tr>
<td>Saturday 6(^{th})</td>
<td>Nature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Day 1 - Session 1: Countries’ EO needs to support climate action
COP26 Goals

1. Secure global net zero by mid-century and keep 1.5 degrees within reach
2. Adapt to protect communities and natural habitats
3. Mobilise finance
4. Work together to deliver
Working together* to deliver

*illustrative, not exhaustive
Day 1 - Session 1: Countries’ EO needs to support climate action
Thank You!

Ailsa Stroud / 21 September 2021
LinkedIn: Ailsa Stroud/ Ailsa.Stroud@defra.gov.uk

#EO4Impact
Paul is a Manager in the Adaptation Division of the secretariat of the United Nations Framework Convention on Climate Change (UNFCCC), and oversees the work on support to the LDCs; National Adaptation Plans (NAPs); and Loss and Damage under the Convention and Paris Agreement. He has extensive experience working on issues related to adaptation to climate change, ecological modeling, remote sensing, integrated assessment, and has served as Coordinating Lead Author of the Third Assessment Report of the IPCC. Prior to his current position, he served as a member and Chair of the LDC Expert Group, was an Associate Professor of Geography at Penn State University after working as a Research Assistant Professor at University of Virginia, in the USA. He run the Miombo Network under the IGBP and START from 1994 to 2006, which had an active GOFC-GOLD involvement. Paul holds a Masters degree in Mathematics and a PhD in Forest Biometrics from Michigan Technological University, USA.
Setting the scene: importance of EO for national climate action on adaptation

Dr. Paul V. Desanker, Adaptation Division, UNFCCC
21 September 2021
Some early experiences

- Mozambique floods of 1999
- Data archives via hard drives
- Data rescue from old media
The NAP development cycle: objectives, steps, support

In 2010 Decision 1/CP.16, para 15: Decides to hereby establish a process to enable least developed country Parties to formulate and implement national adaptation plans, ...

Decision 5/CP.17: Decided on Objectives; initial guidelines for the formulation of NAPs and invitations to relevant organizations to support developing countries in the process to formulate and implement NAPs

At the same COP 17, the GCF governing instrument was adopted and mandated to support National Adaptation Plans (NAPs)
National Adaptation Plans

Then at COP 21 in Paris, the COP requested GCF to expedite this funding, in decision 1/CP.21, para 46:

Further requests the Green Climate Fund to expedite support for the least developed countries and other developing country Parties for the formulation of national adaptation plans, consistent with decisions 1/CP.16 and 5/CP.17, and for the subsequent implementation of policies, projects and programmes identified by them;

GCF responded to the *first part of this request* in how they would provide funding for the formulation of NAPs *> 3M per country for the formulation of NAPs*

Response on supporting implementation expected, beyond normal windows for adaptation projects
Objectives of NAPs and the PA global goal of adaptation

- **Objectives of the NAP process (decision 5/CP.17) are:**
 a) To **reduce vulnerability** to the impacts of climate change, by **building adaptive capacity** and **resilience**;
 b) To **facilitate the integration of climate change adaptation**, in a coherent manner, into relevant new and existing policies, programmes and activities, in particular development planning processes and strategies, within all relevant sectors and at different levels, as appropriate.

- **Global goal of adaptation (Article 7 of the Paris Agreement)**

 Enhancing **adaptive capacity**, **strengthening resilience** and **reducing vulnerability** to climate change, with a view to contributing to **sustainable development** and ensuring an adequate adaptation response in the context of the **global temperature limit of less than 2°C**.
UNFCCC sample process to formulate and implement a National Adaptation Plan

Element A: Lay the groundwork and address gaps

1. Launch NAP work with interim institutional arrangements

2. Synthesize available information, stocktake available resources, programmes and projects, map stakeholders and actors, and assess gaps and needs
 - Synthesis and stocktaking reports; gap analysis and needs report; stakeholder mapping; profile of actors

3. Characterize the development context: identify development-adaptation themes and goals/objectives to focus on
 - Determinants of development and vulnerability

4. Define mandate and strategy, and national institutional arrangements (governance & coordination)
 - NAP mandate & national climate resilient development strategy or framework

5. Define a NAP road map including details on timelines and M&E system

Element B: Preparatory elements

6. Visioning the future scenarios and pathways of development and adaptation actions in a changing climate
 - Road map for the process

7. Analyse past climate and climate change scenarios and characterize climate risk
 - Visioning report

8. Assess climate risks and vulnerability
 - Risk analysis report & scenarios

9. Identify adaptation options to address key vulnerabilities and activities to integrate adaptation in development planning
 - Climate risk and vulnerability Assessment report

Element C: Implementation strategies

10. Appraise, prioritize and rank adaptation options

11. National Adaptation Plan (NAP)

12. Design coherent implementation strategies including synergy
 - NAP + implementation strategy -> Strategic framework for adaptation

13. Implement and manage actions through policies, programmes, projects and other activities
 - Proposals for policies, projects and programmes; institutional capacity-building (readiness)

Element D: Reporting, monitoring and review

14. Monitor and periodically review the process
 - Monitoring and review reports

15. Report on progress, effectiveness and gaps
 - Progress report

Note: Steps (in boxes) and their outputs that act as inputs for subsequent steps are shown.
Abbreviations: M&E = monitoring and evaluation, NAP = national adaptation plan.
A systems approach in NAPs focuses on essential systems deemed important for a national/local context. Data should align to specifics.
Opportunities for supporting adaptation

- **Baseline**: Establish exposure to climate impact drivers in past years
- **Trends over time**: Identify vulnerable areas and regions and changing vulnerability and risk, and estimation of losses
- **Data fusion to quantify risk, vulnerability, exposure**: Improve assessment of risk with better spatial and temporal coverage in data, including regional aspects
- **Decision support**: Support active decision-making through early warning systems such as the Crop Monitors
- **Replace point measurements**: Many countries are now transitioning to remotely sensed data to overcome limited ground measurements for weather data
- **Required outreach and capacity-development**: Human capacity-development and concrete examples to show decision/policy-makers how EO can transform their operations
Thank You!

Paul Desanker / 21 September 2021
pdesanker@unfccc.int / unfccc.int

#EO4Impact
Dr Fakhruddin is an eminent hydro-meteorologist and disaster risk assessor with 20 years’ global experience in water resources and climate resilience projects. His key areas of expertise are hazards forecasting, climate and multi-hazard risk assessments and coastal community resilience. His most high-profile work is evidenced in the development of multi-hazard warning systems – including a tsunami warning system developed for Indian Ocean countries following the deadly 2004 Boxing Day tsunami.

He has since designed and helped to implement climate change and disaster risk projects for more than 25 countries across Asia and the Pacific. Dr Fakhruddin has played a pivotal role in the design and implementation of multi-hazard early warning systems for floods, cyclones and tsunami, crucial to saving lives and livelihoods, while reducing property damage.
EO Role in Climate Actions - LDCs Perspectives

Dr Bapon Fakhruddin / CODATA TG Chair - FAIR Data for DRR
21 September 2021
EO needs to support climate action-LDCs

- LDCs (46 countries) are confronting severe structural impediments to sustainable development and are highly vulnerable.

- Our technology is moving rapidly to ensure creativity and common purpose.

- As climate risk evaluation contains inherent uncertainty, reviewing data on varying timescales provides refinement of decision making.
Challenges - EO to support climate action - LDCs

- **Policy**: Enhance open data policy and national policy on disaster related data
- **Coordination**: A lack of coordination and information-sharing between institutions (in countries and regionally)
- **FAIRness of data in risk assessment**: Difficulties centralising, securing and sharing different types of data across institutions
- **Resource**: High cost of data collection and processing
- **Knowledge**: Limited awareness, capacity and capabilities for using EO data
Day 1 - Session 1: Countries’ EO needs to support climate action
Recommendations

- **Mitigation**: Support the design of NDCs and related plans, strengthen the implementation of NDCs across sectors
- **Adaptation**: Support the design of NAPs and related plans, strengthen the implementation of NAPs across sectors
- **Means of implementation**: Improving access to climate finance, through strengthening proposal development and design
- Utilising EO in projects has the potential for enhancing bankability and therefore increasing financial flows, including from private sector financiers
- Strengthening capacity of government officials, particularly in relation to existing institutional and capacity gaps
- Providing technologies to support with implementation of the Paris Agreement, including for data collection, processing and interpretation
Before he joined the Pacific Community (SPC) on 23 January 2020, Dr Minchin previously served as Chief of the Environmental Geoscience Division of Geoscience Australia, a centre of expertise in the Australian Government for environmental earth science issues and the custodian of national environmental geoscience data, information and knowledge.

He has represented Australia in key international forums and has been the Principal Delegate to both the UN Global Geospatial Information Management Group of Experts (UNGGIM) and the Intergovernmental Group on Earth Observations (GEO).

The Pacific Community is an international development organisation owned and governed by its 26 country and territory members. The organisation’s headquarters are in Nouméa, New Caledonia.
Perspective of SIDS

Dr Stuart Minchin, Director General, Pacific Community
21 September 2021
The Pacific Community

- Large ocean states
- 98% Ocean
- 30% global EEZ
- >50% annual global tuna supply
- Highly dependent on coastal & Oceanic resources
- Extreme exposure to climate change
France-Oceania Summit

- Climate change focus
- 9 country leaders expressed urgent need for better observations systems to support climate adaptation
- Region under-utilizes EO at this time
DIGITAL EARTH PACIFIC – OPERATIONAL EO FOR THE PACIFIC

- Climate Change impacts
- Coastal change/inundation
- Coral bleaching
- Maritime surveillance
- Marine water quality
- Agriculture
- Water
- Vegetation change
Thank You!

Dr Stuart Minchin
Twitter: @sminchin
Email: stuartm@spc.int

#EO4Impact
Rafael Monge is an economist at the Ministry of Environment of Costa Rica, where he is director of the National Center of Geoenvironmental Information (CENIGA), a technical unit specialised in the management and coordination of Costa Rica’s National Environmental Information System (SINIA). He has also led the design and implementation of Costa Rica’s National Land Use, Land Cover and Ecosystems Monitoring System (SIMOCUTE), officialised by an executive decree, in May 2021.

He is an active member of the global GEO community, leading innovative projects in Costa Rica, linked to GEO programs, that seek to leverage the use of earth observations to address major sustainability challenges. In addition, he actively participates in AmeriGEO activities and has been part of the development and implementation of the Aguascalientes Declaration Joint Action Plan.
Countries’ EO needs to support climate action in LAC Region

Rafael Monge /Ministry of Environment and Energy, Costa Rica
21 September 2021
Countries’ EO needs to support climate action – Perspective of LAC
Joint Action Plan (2021 - 2024): Outcomes of the Aguascalientes Declaration
Version 1.0

Prepared by: Participants of the 2020 Americas Symposium
Welcome to the Inter-American Academy of Geosciences & Applications

Partners in the Inter-American community are working to build capacity to advance the use of Statistical, Earth Observation, Geospatial and other Data to improve understanding and promote data-driven decision-making.

AmeriGEO is proud to host the Inter-American Academy of Geosciences & Applications on behalf of a growing network of public and private institutions, academia, and commercial partners.
Day 1 - Session 1: Countries’ EO needs to support climate action
A modeling system for natural capital accounting in Costa Rica

- Biodiversity
- Wildlife-based tourism
- Ecosystem functional type
- Crop pollination
- Water purification
- Carbon storage

Tackling Deforestation and Forest Degradation

Google Earth Engine and Google announce funding for 32 projects to improve our planet with open Earth data.

Mapping Essential Life Support Areas

Building partnerships

New Urban Agenda

Earth Observations Toolkit for Sustainable Cities and Human Settlements

Reporting on the State of the Environment

Ministry of Environment and Energy of Costa Rica

The 2020 GEO Sustainable Development Goals Award

for GEO Member
Case study - Costa Rica

Costa Rica

Costa Rica has developed a National Land-Use, Land Cover and Ecosystem Monitoring System known as SIMOCUTE.

Ownership of SIMOCUTE comes under the Ministry of Environment and Energy and the Ministry of Agriculture and Livestock.

SIMOCUTE is a decentralized system where different institutions and entities share their data and information, according to their mandates and roles, and on the basis of established requirements and standards.

This provides more consistent, accurate, comparable, complete and transparent information on the land-use sector at national scale.

Lesson 3: Forest data for the Enhanced Transparency Framework under the Paris Agreement
Thank You!

Rafael Monge / 21 September 2021
@rafaelmongecr / rmonge@minae.go.cr

#EO4Impact
Dr. Mandira Singh Shrestha is a Programme Coordinator of Climate Services initiative at ICIMOD. She has over 20 years of research experience that cover broad areas of climate services, water induced disaster risk reduction and water resources management. Her research interests center on transboundary flood forecasting and monitoring, application of satellite-based products and end user engagement for reduced flood risks. Her current research focuses on localizing climate services for Agriculture and Tourism. She has coordinated the development of a web based regional flood information system in the Himalayan region where the countries are sharing real-time data and information for flood risk reduction thereby strengthening regional cooperation. Ms. Shrestha holds a Doctor of Engineering from the University of Kyoto, Japan and a Masters in Civil Engineering from the University of Washington, Seattle, USA.
Perspective of mountain nations: EO for climate action and disaster risk reduction in the Hindu Kush Himalayas

Mandira Singh Shrestha/ICIMOD
21 September 2021
Key issues in disaster risk reduction in the mountains

- Multi-hazard environment
- Upstream-downstream linkages
- Connectivity and physical access
- Governance
- Climate change and variability

Day 1 - Session 1: Countries’ EO needs to support climate action
The economic and human impacts of climate related disasters are increasing
Challenges in climate change adaptation and DRR

- Increase in intensity and frequency of climate related disasters
- Inadequate climate observing network
- Lack of sharing of data and information
- Inadequate and varying capacity to use EO
- Limited tailored climate services that is actionable and gender responsive.
Key issues and lessons to support climate action

- **Strengthen climate observing network**, data assimilation and processing techniques, and technologies to produce quality service products to support climate adaptation;

- Lack of credible data and information and limited sharing – need **Policy integration for quick access to satellite imageries to support climate action**;

- **Strengthen partnerships and institutional mechanisms** for communication and dissemination of early warning;

- **Develop capacities** of the HKH countries on the applications of EO and geospatial information for risk assessment and mountain specific issues to improve the adaptive capacity to climate change;

- **Fosters regional cooperation** to address common issues among the HKH countries to support climate action and contribute to local and global knowledge on the mountain systems.
Key messages to COP26

#HKH2Glasgow
ROAD TO UNFCCC COP26

Pulse of the planet
Recognize the HKH as the pulse of the planet - a region that is most vulnerable to the impacts of climate change

Mountains of opportunity
Invest in mountain-specific climate priorities to enhance the resilience of mountain communities

Power of 8
Harness the strength of the 8 HKH countries to enhance regional and international cooperation for climate action

www.icimod.org/cop26
Thank You!

Mandira Singh Shrestha / 21 September 2021
mandira2017@Twitter / mandira.shrestha@icimod.org

#EO4Impact
James Rattling Leaf, Sr., has over 25 years’ working with the US Federal Government, Higher Education Institutions and Non-Profits to develop and maintain effective working relationships with federally and non-federally recognized American Indian tribes, Tribal College and Universities and Tribal Communities. He specializes in developing programs that utilize the interface between Indigenous People’s Traditional Knowledge and Western Science. He sees a greater vision of human knowledge that incorporates the many insights of human cultures and provides a context for our better understanding of the planet and the world.

James is a founding member of the Group on Earth Observations (GEO) Indigenous Alliance that was established at GEO Week 2019 in Canberra, Australia to foster a continued, effective, respectful, and reciprocal relationship with GEO and representatives of indigenous communities from around the world. He was born on the Pine Ridge Indian Reservation and is an enrolled member of the Rosebud Sioux Tribe. His higher education comes from Sinte Gleska University.
Overview of GEO Indigenous Alliance

- Vision
- Foundational Principles
- Current Activities
- Future Efforts
- Website:
 https://earthobservations.org/geo_indigenous_alliance.php#book/
Wopila Tanka - Thank You All!

James Rattling Leaf, Sr. / 21 Sept 2021

#EO4Impact
Since 2016 Steven Ramage has been leading external relations at the Group on Earth Observations (GEO) Secretariat. Steven works on the value and usefulness of Earth observations (EO) for research, policy, decisions and action, notably on the role of EO to provide insights and actionable information for the Sendai Framework, the Paris Agreement, the UN 2030 Agenda and the New Urban Agenda. This is done with a focus on open data access, sharing, policies and use. Steven worked in the private sector for 20 years before he started consulting on location strategy for the World Bank and the United Nations in 2012. He was an owner/director of 1Spatial for almost 10 years before taking on a role as Executive Director of the Open Geospatial Consortium (OGC), and then Managing Director of Ordnance Survey International. He is a Visiting Professor at the Institute for Future Cities, University of Strathclyde, Glasgow and a SASNet Fellow at the Urban Big Data Centre at the University of Glasgow, Scotland. He’s also a Visiting Lecturer at the University of Geneva, Institute of Environmental Sustainability (IES) in Switzerland, a Member of the OGC Global Advisory Council and a Fellow of the Royal Geographical Society (RGS). He tweets as @steven_ramage
Open discussion

Guiding questions

1. What are the most critical EO needs to support climate action at the national level?

2. And how should they be addressed and prioritised by the EO community?
Short break

See you in 1 minute
Session 2

GEO Work Programme activities supporting climate action
Virginia Burkett is co-chair of GEO's Climate Change Working Group. She is the Chief Scientist for Climate and Land Use Change at the U.S. Geological Survey. She served as Chief Scientist for Global Change Research at the USGS (2006-2014), USGS Associate Director for Climate and Land Use Change (2015-2017) and Chair of the U.S. Global Change Research Program (2017-2019). Dr. Burkett has published extensively on the topics of global change and low-lying coastal zones. She was as a Lead Author of the United Nation’s Intergovernmental Panel on Climate Change (IPCC) Third, Fourth and Fifth Assessment Reports and the IPCC Technical Paper on Water. She was a Lead Author of the First, Second, and Third U.S. National Climate Assessments and served on the Federal Steering Committee for NCA4 (2018).

Virginia Burkett
Chief Scientist for Climate and Land Use Change, United States Geological Survey
CC-WG Co-chair
Rui Kotani is GEO Disaster Risk Reduction (DRR) Coordinator, being responsible for supporting GEO’s DRR Working Group and relevant GWP activities while working closely with UNDRR for the Sendai Framework on DRR.

Before joining the GEO Secretariat, Rui worked for an international organization and various Japanese government agencies related to the design and the implementation of STI policies on global issues in the context of international cooperation and development aid. Namely, she served as Associate Senior Administrator at Japan Aerospace Exploration Agency (JAXA) [2020-2021]; Science and Technology Specialist for the Firm Capability and Innovation Global Practice at the World Bank [2018-2020]; Deputy Director for International Affairs in the Bureau of STI Bureau at the Cabinet Office [2015-2018]; Specialist for the Environment and Energy Division of R&D Bureau at MEXT [2012-2015], and Associate Fellow at Japan Science and Technology Agency (JST) [2006-2012]. Rui received Master of International Affairs from Columbia University.
David Borges is a Physical Scientist with the NASA Earth Applied Sciences Disasters Program at NASA Langley Research Center. He provides international project management and geospatial analytics solutions to disaster related issues on a global scale through application development and geospatial enablement of Earth observation information.

He is also an active member of the UNDRR Global Risk Assessment Framework (GRAF) WG and UN-GGIM WG-Disasters. Before joining NASA, David spent ten years in the private sector supporting a variety of clients, including the U.S. Federal Emergency Management Agency (FEMA) and Department of Homeland Security (DHS).
Allison Craddock is a member of the Geodynamics and Space Geodesy Group in the Tracking Systems and Applications Section at the NASA Jet Propulsion Laboratory in Pasadena, California, USA. Her work includes advocacy and coordination for interoperable, discoverable, and openly available Global Navigation Satellite System (GNSS) data, promoting geodetic infrastructure development, and developing effective capacity building policies to support a global geodetic reference frame for sustainable development.

She is the Director of the International GNSS Service (IGS) Central Bureau, Manager of External Relations for the International Association of Geodesy’s Global Geodetic Observing System, and a staff member of the NASA Space Geodesy Program.

Craddock is a representative of the International Association of Geodesy on the Group on Earth Observations (GEO) Programme Board and Executive Committee; she also serves as a co-chair of the GEO Capacity Development Working Group. She tweets as @allisonordnung.

Allison Craddock
Central Bureau (Secretariat) Director
International GNSS Service
CD-WG Co-chair
GEO Work Programme Mapping
– initial results

GEO Climate Change WG, DRR WG, Capacity Development WG
21 September 2021
Background info

- Aim to identify potential disconnect and synergy opportunities among GWP activities to meet policy needs while contributing to next GWP
- Cross-WG effort among CC, DRR, CapD since the end of 2020
- Technical support from ESRI (Pat Cummens) and AmeriGEO (America Alvarez)
- 6 sections: 1) GEO WP activity identification, 2) scope and area of impact, 3) CC, 4) DRR, 5) CapD, 6) additional feedback
- Officially launched on 31 August through invitations to GEO WP leads (initial deadline 10 Sept)
Mapping interface and Dashboard

Section 3: Climate Action

1. Does your GEO Activity provide inputs to the United Nations Framework Convention on Climate Change (UNFCCC) and Paris Agreement process?
 - Yes
 - No

2. Are you collaborating with the UNFCCC national focal points in the countries your GEO activity operates in?
 - Yes
 - No

3. Which, if any, of these broad areas does your GEO activity support through the use of Earth observation?
 - Adaptation (i.e., climate change impacts, vulnerability, and adaptation measures to increase resilience)
 - Loss and damage (i.e., approaches to averting, minimizing, and addressing loss and damage associated with the adverse effects of climate change)
Climate Action

GEO WP link to climate policy is still weak

- Input to UNFCCC/PA process: 8 activities
- Collaboration with UNFCCC focal points: 5 activities
- Support to UNFCCC Parties (e.g., reporting): 7 activities

But...focus/support areas tell us something else

- Adaptation: 31 activities - of which
 20 are suitable for GEO technical guidance on National Adaptation Plans
 25 support monitoring of extreme weather events

- Loss & Damage: 26 activities

- Means of implementation (finance, technology, capacity building): 24 activities

- Mitigation: 18 activities

- Climate Science: 17 activities

- REDD+: 8 activities
Disaster Risk Reduction (DRR)

- **Strength**: alignment with SFDRR priorities for action
- **Weakness**: existing coordination/collaboration with DRR users → need to ensure Toolkit helps match EO-tech "seeds" with user "needs"

GWP Activities’ Alignment with or Support for UNDRR
Sendai Framework Priorities for Action

<table>
<thead>
<tr>
<th></th>
<th>Understanding Disaster Risk</th>
<th>Strengthening governance & management of DR</th>
<th>Investing in DR for resilience</th>
<th>Enhancing disaster preparedness for effective response, recovery, rehabilitation and reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>30</td>
<td>14</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>Flagship</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Initiative</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Regional/GEO</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CA</td>
<td>15</td>
<td>6</td>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

- Support Sendai Framework
 - Yes 52% (33)
 - No 25% (16)

- Mentioned in Natl DRR strategy
 - Yes 11% (7)
 - No 63% (16)

- Work w/DRR agency, institution, practitioner
 - Yes 34% (22)
 - No 36% (24)

- Work w/ Sendai focal pts.
 - No 63% (40)
 - Yes 13% (8)

- Aware if countries leverage activity efforts
 - Yes 8% (5)
 - No 67% (43)

- Willing to participate in EO Risk Toolkit
 - Yes 58% (36)
 - No 16% (10)
Capacity Development

Capacity Development is an essential element for supporting both Climate and DRR activities – it is how we empower our community with the tools it needs to maximize the impact and utility of Earth Observations.

Strengths – there is already a lot of interest in producing and sharing Capacity Development resources, across the GEO Work Programme.

Weaknesses – collaborating across some Work Program flagships, initiatives, and community activities could be increased; there are CD resources that could be produced and shared by multiple WP components.

Opportunities – identify and curate CD resources that bridge the gap between current and desired levels, as indicated by WP components, and in collaboration with Regional GEOs.

There are a lot of great CD resources already somewhere in the GEO community – how can we make sure we know what is already available, make it findable and accessible?

GEO Work Programme components: current CD level vs. (desired CD level)

<table>
<thead>
<tr>
<th></th>
<th>No answer</th>
<th>New to EO</th>
<th>Novice level</th>
<th>Intermediate level</th>
<th>Advanced level</th>
<th>Expert level</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>15 (17)</td>
<td>3 (3)</td>
<td>9 (6)</td>
<td>21 (14)</td>
<td>11 (20)</td>
<td>5 (4)</td>
<td>64 (64)</td>
</tr>
<tr>
<td>Flagship</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (1)</td>
<td>2 (1)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Initiative</td>
<td>3 (3)</td>
<td>1 (0)</td>
<td>4 (2)</td>
<td>5 (6)</td>
<td>5 (7)</td>
<td>2 (2)</td>
<td>20 (20)</td>
</tr>
<tr>
<td>Regional GEO</td>
<td>0 (0)</td>
<td>0 (3)</td>
<td>1 (0)</td>
<td>3 (1)</td>
<td>0 (2)</td>
<td>0 (1)</td>
<td>4 (7)</td>
</tr>
<tr>
<td>CA</td>
<td>11 (13)</td>
<td>2 (0)</td>
<td>4 (3)</td>
<td>11 (6)</td>
<td>5 (10)</td>
<td>3 (1)</td>
<td>36 (33)</td>
</tr>
</tbody>
</table>

GEO CLIMATE POLICY AND FINANCE WORKSHOP

The GEO Group on Earth Observations

How can we effectively gather and build CD tools for GEO toolkits?
Initial observations

- # of completed responses: 46 out of 64 (good!)
- Establishment of baseline
- GEO Work Programme link to policy: needs improvement
- Survey results will help guide activities of Cross-GEO Working Groups (such as this workshop)

Next steps

- Continue mapping: open-ended process (second deadline for submissions/updates tbd)
- Gaps report to PB in 2022 to inform call for proposals for next GEO WP
- Dashboard to be hosted on GEO website
Feedback and suggestions are welcome

Thank you!

Sara Venturini
sventurini@geosec.org

#EO4Impact
Pat started her career with 14 years in state government, pioneering early GIS work in Minnesota and New Jersey. She joined Esri in 1998, supporting the state and national government teams, focusing on understanding emerging government policies and how to apply innovative applications of GIS technology to support them. Pat has developed skills to bridge the gap between policy and technology, working with executives in state and federal government, the White House, and US Congress to help them understand the value geospatial data and GIS technology bring to realizing efficient, smart government.

Esri is a GEO Associate with many years of contributions to GEO projects. Pat coordinates Esri’s engagements across all of GEO’s work program areas and serves on the GEO Climate Change work group and supports AmeriGEO activities.

Patricia Cummens
Government Strategist, Esri
Applying Modern Data Collection and Analysis Techniques

Patricia Cummens, Esri
21 September 2021
Modern Data Collection and Analysis Techniques

- User friendly survey
- Flexible dashboards
- Interactive visualizations
- Interrogate data
- Derive Insights

Streamlining the process…
…Make the most of data
Thank You!

Patricia Cummens / September 21, 2021
pcummens@esri.com

#EO4Impact
Ian is the Director of the GEO Global Agricultural Monitoring (GEOGLAM) flagship initiative.

He has been stationed within the GEO Secretariat in Geneva Switzerland since 2017. Previously Ian was the Director of Agro-Climate, Geomatics and Earth Observation at Agriculture and Agri-Food Canada in Ottawa.
Monitoring Agriculture for Climate Response

Ian Jarvis, GEOGLAM
and
Catherine Nakalembe, NASA Harvest
21 September 2021
Operational Global Crop Assessments:
Crop Monitor for Early Warning

Day 1 - Session 2: GEO Work Programme activities supporting climate action
Co-Development of National Monitoring Systems

7 Countries and 1 Region
The Uganda Experience

- Uganda’s population is predominantly rural with up to 80% of the households relying on rain-fed crops.
- A disaster risk financing (DRF) project was launched in 2016 for the Karamoja region.
- GEOGLAM worked with the Ugandan Government to develop quantitative triggering indicators using EO.
- It was immediately put into action in 2016-17 to respond to severe drought, triggering labour-intensive public works funding to offset crop failures.
Impact 2016/17

“In the past we always reacted to crop failure, spending billions of shillings to provide food aid in the region. 2017 was the first time we acted proactively because we had clear evidence from satellite data very early in the season”

Martin Owor, Commissioner Office of the Prime Minister (OPM)

> Earth Observations provided warning 3 months sooner than previous years

> The government was able to quickly implement programs to address the climate emergency and reduce suffering
Evaluation and Lessons Learnt

• A 2019 review of DRF indicated that the Government of Uganda realized a saving of UGX 9.6bn (51%) against an overall emergency fund of UGX 19bn for FY ending 2016/17.

• The program has supported 66,075 households (~ 300,000 people)

• Uganda was able to run the EO-based assessment locally, which increased the credibility and ownership of the results (impact of co-development)

• Since 2016 Uganda has operationalized the crop monitoring system and it is now a part of the Uganda National Early Warning Bulletin
Next Steps

- Developing National Adaptation Plan (NAP) Supplementary Technical Guidance on the use of EO for Agricultural Monitoring (based on Uganda case study)
- Knowledge packages for the GEO Knowledge Hub, to support NAP guidance
- Work with a new country to utilize/test/evaluate the NAP guidance (possibly Malawi)
 - Funding required to drive this
- Exploring avenues to scale up co-development
Thank You!

Ian Jarvis / 21 September 2021
@geoglam / ijarvis@geosec.org

#EO4Impact
Dr Gutierrez is a Lead scientist at NOAA, with over 25 years of experience in the fields of hydrology, water quality, and environmental policy. She is a member of the Ambassador's Water Experts Program (AWEP), where she serves as an expert hydrologist on behalf of the U.S. around the world, a Program in support of the U.S. President's Global Water Strategy.

Within the Group on Earth Observations (GEO), she is a Co-chair of the regional GEO in the Americas (AmeriGEO) and a co-chair of the Global Water Sustainability (GEOGloWS) Initiative. She is the recipient of the GEO Individual Excellence Award 2019 for her exceptional contributions to the work of GEO by improving water sustainability in multiple countries, and pioneering scientific and regional collaboration. She holds a Ph.D. in Civil and Environmental Engineering from the University of Maryland and an M.S. in Technology Management and Public Policy from the State University of New York at Stony Brook.

Lead Scientist for Water Prediction, National Oceanic and Atmospheric Administration
Real-time decisions during Hurricanes ETA and IOTA
GEOGloWS-ECMWF, Honduras

Angélica Gutiérrez, Co-Chair GEOGloWS Initiative
21 September 2021
Since 2017 – organizations using GEOGloWS-ECMWF Streamflow forecast System in the following countries

Dominican Republic, Peru, Colombia, Israel, Togo, Brazil, Honduras, SICA/Central America, El Salvador, Afghanistan, Tajikistan.

World Bank Projects - Ethiopia, Ivory Coast, Somalia, Nile Basin Initiative

RCMRD operates the NASA-SERVIR – Kenya, Tanzania

Nepal, Bangladesh, Bhutan, FEWSNET (USAID)
Lack of long-range forecast information.

Two hurricanes in one month
The Sula Valley, the most vulnerable area in Honduras

The only major river control structure in the upper basin is the Central Hidroeléctrica Francisco Morazán, with about 39% of the water contribution to the valley.
In preparation for ETA …..

CAFFGS

WRF

Resultados con datos del Modelo WRF

<table>
<thead>
<tr>
<th></th>
<th>7:00 am de 05 de NOV</th>
<th>7:00 am de 06 de NOV</th>
<th>7:00 am de 07 de NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lluvia promedio acumulada</td>
<td>102.45</td>
<td>189.76</td>
<td>209.85</td>
</tr>
<tr>
<td>Q m3/s</td>
<td>8548.12</td>
<td>8399.64</td>
<td>6137.89</td>
</tr>
<tr>
<td>Vol MM3 (acumulado)</td>
<td>825.35</td>
<td>1610.05</td>
<td>1777.47</td>
</tr>
<tr>
<td>Nivel pronosticado (msm)</td>
<td>265.38</td>
<td>293.29</td>
<td>294.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6 horas</th>
<th>24 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 pm de 04 de NOV</td>
<td>12 pm de 05 de NOV</td>
</tr>
<tr>
<td>Q m3/s</td>
<td>3165.71</td>
<td>4066.75</td>
</tr>
<tr>
<td>Vol MM3 (acumulado)</td>
<td>79.14</td>
<td>415.53</td>
</tr>
<tr>
<td>Nivel pronosticado (msm)</td>
<td>277.80</td>
<td>281.49</td>
</tr>
</tbody>
</table>
November 2: What was done during ETA?

Central Hidroelectrica Francisco Morazán - “El Cajón”

- With Eta’s arrival, the water elevation increased, surpassing the 285 m maximum level of the reservoir.

- During the emergency and as part of the ENEE’s management plan, energy production was maximized while retaining as much water as possible in the reservoir.

ETA - stored volume = 1068 MM3
maximum flow = 4,000 m³/s
level: 13.35 m | 285.95 msnm
(protocol start)
The announcement of IOTA brought serious complications to our Decision process
 • We needed long range forecast information
Day 1 - Session 2: GEO Work Programme activities supporting climate action
November 11: Validation of GEOGloWS forecast against In-situ data to determine
1. the accuracy of the prediction and
2. whether or not ENEE's decisions could be based on GEOGloWS forecast.
Analysis and Projections based on GEOGloWS forecast for IOTA indicate that reservoir capacity is not enough.
In real time, we validate the forecast and we are able to make additional decisions such as closing the gates to detain El Cajón’s inflow so as not to add to the extreme flows of the uncontrolled Ulua and Cuyamapa Rivers and provide the best opportunity for the flood wave to pass through the valley.
Results and Benefits

• The use of the GEOGLoWS-ECMWF Streamflow Forecast service avoided severe socio-economic losses and damages in the Sula Valley.

• Decisions on Community evacuations conducted by the National System of Disaster Risk Reduction (SINAGER) and the Committee of Contingencies (COPECO) were guided by ENEE’s information based on GEOGloWS.

• The president of the ENEE's audit commission acknowledges that: "El Cajón Dam was the Sula Valley’s silent hero, retaining more than one billion cubic meters of water that were not discharged into the valley".
Inter Institutional Collaboration

Thank You!

Day 1 - Session 2: GEO Work Programme activities supporting climate action
Thank You!

Angélica Gutiérrez
angelica.gutierrez@noaa.gov

#EO4Impact
Senior Postdoctoral Researcher at MaREI, UCC, working on climate change adaptation and development of climate services and often collaborates with local/national government on climate change adaptation.

Research Areas:

- Climate Risk and Adaptation
- Coastal Management
- Remote Sensing/GIS

James has background in Earth Sciences and Coastal Management and has worked at universities in the UK, Denmark, and Ireland.
GEO Blue Planet - Dynamic Coast: supporting climate change adaptation of the coast

Dr. James Fitton, MaREI, UCC
21 September 2021
Increasing extents and rates of **coastal erosion** will result due to sea level rise and climate change, causing the **loss of valuable ecosystem services within the intertidal zone**.

To support climate adaptation we need to **map the environment and monitor this change**.

Coastline data/maps are often out of date/incorrect due to high cost and logistical complexities involved in regularly survey and map at national scales.

The intertidal zone is a **difficult environment to map** using traditional approaches: Earth Observation.

Dynamic Coast has developed Coast X-Ray, a new approach to map the intertidal zone by measuring **water occurrence frequencies using tidally calibrated satellite imagery** (Sentinel-2), processed within Google Earth Engine (GEE), for the UK and Ireland.
Day 1 - Session 2: GEO Work Programme activities supporting climate action
• a Water Occurrence output;
• an Intertidal Elevation (metres relative to mean sea level) output;
• an Intertidal Tide Stage (% of MHWS/MLWS tide range) output;
• a RGB image representing the highest tidal stage observed;
• a RGB image representing the lowest tidal stage observed;
• an estimate of the MHWS contour (the -10 to 0% tide stage interval), if available;
• an estimate of the MLWS contour (the 90 to 100% tide stage interval), if available.

www.DynamicCoast.com
Highest Tide Lowest Tide

Water Occurrence Elevation

Intertidal Tide Stage

Day 1 - Session 2: GEO Work Programme activities supporting climate action
Day 1 - Session 2: GEO Work Programme activities supporting climate action
a) Derrymore Island

b) Eccles-on-Sea

Low Water

Erosion

High Water

Accretion

1 km

400 m
• EO has allowed us to develop a useful tool that is supplying change intelligence of intertidal extent and coastal change.

• These outputs supports the OS and others to accurately map coastal environments.

• Scottish Government provided £12m (€14m, $16.5m) for coastal adaptation.

• Knowing where the coastline is and how it is changing is crucial for coastal adaptation planning and implementation.
Thank You!

James Fitton
@J_M_Fitton / james.fitton@ucc.ie

#EO4Impact
Dr. Frédéric Bretar is a French Engineer and a scientist. He was a researcher on Lidar, image processing and photogrammetry at the French National Survey (IGN) before heading a laboratory in Earth Sciences. He served as a diplomat for some years in China (Shanghai and Hong Kong). He joined the Centre National d’Etudes Spatiales (CNES) in 2019 to develop and manage the Space Climate Observatory.
Supporting Climate action at national level: Hints from the SCO

Frédéric BRETAR/CNES
21 September 2021
SCO is...

✓ An international Alliance of space agencies and UN bodies with local implementations

✓ It aims to provide operational tools and studies to help decision makers to adapt to climate change, especially at local scales, using satellite earth-based observation tools in combination with field data and models.

✓ A strong accreditation process able to generate a rich portfolio of projects

✓ 43 accredited projects on 64 experimental areas (~20 countries)

✓ 10 Topics: Land Use, Biodiversity, Carbon, Extreme Meteo, Energy, Natural Disaster Response, Agriculture, Health, Water management, education
Urban areas: Thermocity

Studying urban heat islands and heat losses through the development of a thermography analysis tool based on satellite imagery.

- ASTER (TIR, 60km/90m)
- ECOSTRESS (TIR, 70m)
- Copernicus Sentinel-2 (Visible, 300km/10m)
- Pléiades (Visible, 20km/70cm)

- Thermography and related products (heat islands, hot spots, etc.)
- Emissivity/temperature separation

Co designed with

Open source, open data

Full description
Monitoring deforestation: TropiSCO

- Daily processing of Sentinel-1 (RADAR) data
- Deforestation map updated weekly: public data

Product description:
- Weekly quick detection maps: minimum detection size = 0.1 ha
- Monthly and yearly deforested areas reports
- Specific products for partner users

Full description

Open source, open data
Thank You!

https://www.spaceclimateobservatory.org/

Frédéric BRETAR / 21 September 2021
Frederic.bretar@cnes.fr

#EO4Impact
Shanti Reddy has more than 30 years of experience in applying Earth observation and geospatial technologies to deliver policy outcomes at national and international level.

Over the past 12 years, he has been leading the geospatial and carbon modelling team at the Department of Industry, Science, Energy & Resources (DISER), Australian Government, contributing to the national GHG inventory and also domestic mitigation projects in Australia.

He is currently on deputation to Geoscience Australia where, as a senior manager, he is assisting with the Digital Earth Africa partnerships and strategic planning.

Shanti is one of the lead authors of 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. He has extensive experience in assisting countries in SE Asia and Africa in implementing EO data to support environmental and climate action.
Digital Earth Africa: A Platform to Support Climate Action in Africa

Shanti Reddy, Senior Manager
21 September 2021
Digital Earth Africa (DE Africa) is a not-for-profit initiative funded by The Helmsley Charitable Trust, USA and the Australian Government.

Our vision

DE Africa will provide a routine, reliable and operational service, using Earth observations to deliver decision-ready products enabling policy makers, scientists, the private sector and civil society to address social, environmental and economic changes on the continent and develop an ecosystem for innovation across sectors.

Our mission

DE Africa will process openly accessible and freely available data to produce decision-ready products. Working closely with the AfriGEO community, DE Africa will be responsive to the information needs, challenges and priorities of the African continent. DE Africa will leverage and build on existing capacity to enable the use of Earth observations to address key challenges across the continent.

The governance of DE Africa is guided by several key principles:
- Continental-scale
- Sustainable
- Domain expertise
- Open and Free Data
 - Interoperability
 - Privacy and Integrity
- Accountability and transparency
 - Responsive to African priorities
 - Agile, nimble and action-oriented
- Diversity and inclusion
 - Multi-sector perspectives
 - Span data communities
 - Foster collaboration
Digital Earth Africa Partners

Partnerships and collaborations underpin Digital Earth Africa’s operational model
DE Africa – Unique Value Proposition 1

Continental decision-ready products and services

ARD products and services
Analysis Sandbox
DE Africa Training Courses
DE Africa Map
Web Services for GIS
Africa Geoportal

Compared to traditional approach -
• 40% - 80% cost effective
• Several times faster to implement

Day 1 - Session 2: GEO Work Programme activities supporting climate action
DE Africa – Unique Value Proposition 2

African based governance and ownership
Expanding and Engaged User Community
Collaboration & established partnerships
Ready to roll!
DE Africa Engagement with users to co-develop user cases

- Vegetation changes, NBS Tanzania, co-development, Published with measurable impact
- Using WOFS in monitoring Okavango Delta
- Assessment of coffee farming in Muranga, Kenya
- Water quality, Lake Baringo
- Water extent, Lake Victoria
- Urbanisation, Nairobi
- Mangroves in 2016

Time series for nature: Preserving mangroves in Zanzibar published on DE Africa website
DE Africa in action to support the Paris Agreement

1. National GHG Inventories, Inventory Systems & Reporting
 - Activity data for land remaining and land converted categories (consistent with the 2006 Guidelines), which can be combined with emission factors or a T2/T3 model to generate IPCC compliant carbon accounts

2. Mitigation Projects
 - Reduced / avoided deforestation
 - Afforestation & Reforestation
 - Reduced emissions from savanna fires
 - Restoration of mangroves

3. Adaptation plans
 - Climate impacts such as coastal erosion, water availability, climate resilient cropping, infrastructure protection, DRR, urban planning, etc.
Forest Land converted to settlements & wetlands

Sudan - Landsat, May 1984

Sudan - Sentinel-2 GeoMAD, Jan 2017
Grasslands converted to settlements & wetlands

Nigeria – Landsat, Nov 1998

Nigeria - Sentinel-2 GeoMAD, Jan 2017
Forest land conversion - deforestation

Ghana - Sentinel-2 GeoMAD, Jan 2017

Ghana - Sentinel-2 GeoMAD, Jan 2020
Reduced / avoided deforestation

- Africa has highest rate of annual loss of forest
- During 2010-20, annual rate of net loss of forest in Africa was about 3.9 mha (FAO 2020 report)
- Since 1990, 106 mha of forest loss is reported
- If we can reduce/avoid annual net forest loss by even 10% it would result in significant emissions savings (~222 Mt CO$_2$-e y$^{-1}$)
In Australia, 13 Mt CO$_2$-e abatement has been contracted by the gov't in the last 10 years, valued at ~$195m (@ $15/tonne).

EO data is a key input to map EDS & LDS fires.
Mean annual emissions abatement potential from reduced savanna fires

Based on the successful approach developed in Australia, 29 countries in Africa could abate 69.1 Mt CO₂-e emissions per year.

EO data is a key input to map EDS & LDS fires.

For example, in Australia, 13 Mt CO₂-e abatement has been contracted by the govt in the last 10 years, valued at ~$195m (@ $15/tonne).
Mapping coastline changes, critical for adaptation planning

Coastal erosion between 2013 to 2020
West Africa

Study led by CSE, Senegal, using DE Africa products, services, and technical assistance
Take away message!

DE Africa is operational and ready to support climate action in Africa. It is a unique capability for Africa.

DE Africa is African owned and led - delivered by 6 regional partners, coordinated by a Program Management Office in Pretoria, with oversight by an African Board.

This is a good time for new investors and collaborators to take advantage of the existing investment & infrastructure to build additional tools and services.
Thank You!

Shanti Reddy, 21 September 2021
shanti.reddy@ga.gov.au

@DEarthAfrica #DigitalEarthAfrica
#EO4Impact
Virginia Burkett is co-chair of GEO's Climate Change Working Group. She is the Chief Scientist for Climate and Land Use Change at the U.S. Geological Survey. She served as Chief Scientist for Global Change Research at the USGS (2006-2014), USGS Associate Director for Climate and Land Use Change (2015-2017) and Chair of the U.S. Global Change Research Program (2017-2019). Dr. Burkett has published extensively on the topics of global change and low-lying coastal zones. She was a Lead Author of the United Nation's Intergovernmental Panel on Climate Change (IPCC) Third, Fourth and Fifth Assessment Reports and the IPCC Technical Paper on Water. She was a Lead Author of the First, Second, and Third U.S. National Climate Assessments and served on the Federal Steering Committee for NCA4 (2018).
Open discussion

Guiding questions:
1. How can GEO most effectively support national climate action with EO-based products?
2. What should be the “GEO niche” or the unique contribution of GEO in supporting the implementation of the Paris Agreement?
3. Are there any perceived gaps or synergies in the GEO WP to address national climate action? If so, how should these be addressed or exploited?
Wrap-up

End of Day 1