Amazon and GEO project
“Methodology for SDGs indicators assessment”

Prof. Nataliia Kussul (PI)
Space Research Institute NAS Ukraine and SSA Ukraine

Prof. Shelestov Andrii
Space Research Institute NAS Ukraine and SSA Ukraine

Yailymov Bohdan
Space Research Institute NAS Ukraine and SSA Ukraine

Shumilo Leonid
Space Research Institute NAS Ukraine and SSA Ukraine

Hanna Yailymova
Space Research Institute NAS Ukraine and SSA Ukraine

Earth Observation Cloud Credits Programme
Problem Statement

Assessment of SDG indicators:

- 2.4.1 “Proportion of agricultural area under productive and sustainable agriculture”;
- 11.3.1 “Ratio of land consumption rate to population growth rate”;
- 15.1.1 “Forest area as proportion of total land area”;
- 15.3.1 “Proportion of land that is degraded over total land area”

Workflows development for SDG assessment

Study area - over Ukraine, Argentina and India;

Activities (for Ukraine):

- Land cover mapping;
- Open Data Cube deployment

Planned activities (for Argentina and India):

- Workflow development and EV estimation;
- Capacity building and dissemination activities

Earth Observation Cloud Credits Programme
Proposed Solution

- Informational technology for SDGs indicators 15.3.1, 15.1.1, 2.4.1 and 11.3.1 assessment
- Implementation in the AWS cloud environment
- Usage of Open Data Cube technology and deep learning algorithms for data analysis and trends mining.
- The scaling of this technology for 3 countries: Ukraine, Argentina and India

Workflow for calculating SDG indicators 11.3.1, 15.1.1, 15.3.1 and 2.4.1 within cloud Data Cube technology
Project Status Update

✓ Sentinel-1 processing workflow was set-up in the AWS
✓ Sentinel-1 data was ingested into the Data Cube
✓ >30 TB of satellite data for Ukraine were processed
Project Status Update

✓ Sentinel-2 and Landsat-8 compositing procedure for specific time-series generation has been created

✓ The procedures classification of satellite data in the DataCube have been created

✓ The crop type and land cover classification map for Ukraine for 2020 has been obtained

<table>
<thead>
<tr>
<th></th>
<th>PA</th>
<th>UA</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereal</td>
<td>95,1</td>
<td>97,3</td>
<td>96,2</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>89,3</td>
<td>98,5</td>
<td>93,6</td>
</tr>
<tr>
<td>Maize</td>
<td>89,5</td>
<td>94,1</td>
<td>91,7</td>
</tr>
<tr>
<td>Sunflower</td>
<td>94,4</td>
<td>94,9</td>
<td>94,7</td>
</tr>
<tr>
<td>Soybeans</td>
<td>80,6</td>
<td>89,1</td>
<td>84,6</td>
</tr>
<tr>
<td>Other lands</td>
<td>84,4</td>
<td>63,4</td>
<td>72,5</td>
</tr>
<tr>
<td>Overall Accuracy</td>
<td></td>
<td></td>
<td>91,6</td>
</tr>
</tbody>
</table>

Earth Observation Cloud Credits Programme
Project Status Update

✓ **Functional Urban Areas** vector layer has been created for Ukraine

✓ **Built-up area maps** for Ukraine was built for 2016 and 2020

✓ The indicator 11.3.1 is calculated based on the built-up area maps and FUA layer for 2016 & 2020 on the city and country scale

Earth Observation Cloud Credits Programme
Project Status Update

✓ Landsat-8, Sentinel-2 vegetation indices time series trend analysis workflow has been created in the Ukrainian Data Cube

✓ An agricultural land degradation map with a 30-meter spatial resolution for 2020 has been created in the Data Cube
Challenges and Roadblocks

- Sentinel-1 data ingestion in Data Cube
- Time series composites generation for land cover / crop type classification
- The need for usage of advanced technique of multiprocessing and clustering
- In-situ data collection during the lockdown periods
Next Steps and Expected Impact

Expect to get done by the end of 2021:

• Land cover classification technology in the Data Cube will be scalable
• Finalization workflows over the cloud on the satellite data of SDG indicators:
 - 2.4.1
 - 15.1.1
 - 15.3.1
 - 11.3.1

Expected impact:
The improvement of existing workflows for SDG indicators assessment by the use of high spatial resolution data and filling gaps between existing global products and national ones